89 research outputs found

    Nanoscale Electrostatic Control of Oxide Interfaces

    Full text link
    We develop a robust and versatile platform to define nanostructures at oxide interfaces via patterned top gates. Using LaAlO3_3/SrTiO3_3 as a model system, we demonstrate controllable electrostatic confinement of electrons to nanoscale regions in the conducting interface. The excellent gate response, ultra-low leakage currents, and long term stability of these gates allow us to perform a variety of studies in different device geometries from room temperature down to 50 mK. Using a split-gate device we demonstrate the formation of a narrow conducting channel whose width can be controllably reduced via the application of appropriate gate voltages. We also show that a single narrow gate can be used to induce locally a superconducting to insulating transition. Furthermore, in the superconducting regime we see indications of a gate-voltage controlled Josephson effect.Comment: Version after peer review; includes additional data on superconductivit

    Fast Long-Distance Control of Spin Qubits by Photon Assisted Cotunneling

    Full text link
    We investigate theoretically the long-distance coupling and spin exchange in an array of quantum dot spin qubits in the presence of microwaves. We find that photon assisted cotunneling is boosted at resonances between photon and energies of virtually occupied excited states and show how to make it spin selective. We identify configurations that enable fast switching and spin echo sequences for efficient and non-local manipulation of spin qubits. We devise configurations in which the near-resonantly boosted cotunneling provides non-local coupling which, up to certain limit, does not diminish with distance between the manipulated dots before it decays weakly with inverse distance.Comment: 17 pages (including 8 pages of Appendices), 2 figure

    Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement

    Full text link
    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.Comment: 35 pages, 19 figures. This article provides the full analysis of a scheme proposed in Phys. Rev. Lett. 111, 246802 (2013). v2: version as publishe

    Implementation of a three-quantum-bit search algorithm

    Get PDF
    We report the experimental implementation of Grover's quantum search algorithm on a quantum computer with three quantum bits. The computer consists of molecules of 13^{13}C-labeled CHFBr2_2, in which the three weakly coupled spin-1/2 nuclei behave as the bits and are initialized, manipulated, and read out using magnetic resonance techniques. This quantum computation is made possible by the introduction of two techniques which significantly reduce the complexity of the experiment and by the surprising degree of cancellation of systematic errors which have previously limited the total possible number of quantum gates.Comment: Published in Applied Physics Letters, vol. 76, no. 5, 31 January 2000, p.646-648, after minor revisions. (revtex, mypsfig2.sty, 3 figures
    • …
    corecore